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ABSTRACT 

A procedure to use the spline interpolation technique on an arbitrarily prescribed two-dimensional data field is 
described. For using this technique, one must obtain an initial approximation to the data a t  the grid points. This is 
achieved by fitting spherical surfaces to the data. Bidirectional spline interpolation is then applied repeatedly on the 
grid point estimates of the data to produce convergence to the true surface. 

The spline interpolation technique and another objective analysis technique developed by Cressman are tested 
against an exact solution, and the resulting analyses are compared. Real temperature, geopotential height, and wind 
data for various pressure surfaces are analyzed by the spline method; and the results are compared to  subjective analy- 
ses of the same data. 

1. INTRODUCTION 

With the development and continuing improvement of 
the electronic computer came the beginning of practical 
numerical weather prediction. The present day computers 
make it possible to use elaborate numerical models to im- 
prove forecast accuracy; however, there are certain limi- 
tations to  this improvement that cannot be overcome by 
increasing the speed and capacity of the computer or by 
improving the set of equations that define the model. The 
two major limitations are (1) the density of the network 
of observation stations and (2) the unavoidable error, 
instrument or otherwise, introduced while making any type 
of measurement. The first limitation imposes a well-defined 
limit on the scale of atmospheric motion that can be re- 
solved by the model. Of course, the solution to this problem 
is simply to  increase the density of the observing network, 
thereby obtaining the “scale of data’’ necessary for pre- 
dicting the corresponding scale of motion. The second 
limitation is far more difXcult to eliminate. Any set of ob- 
servations contains certain random errors as well as some 
small-scale fluctuations (noise). In  using this data in any 
numerical model, it is of utmost importance to eliminate 
these errors and the noise if t.he final results are to be mean- 
ingful. This has been demonstrated, for example, by the 
studies of Best (1956) and Berggren (1957). Since meteoro- 
logical prediction is an initial value problem, it becomes 
imperative to begin any numerical weather prediction with 
the “best possible” representation of the real data. 

Various attempts at  solving this problem have been 
introduced in meteorology within the past 15 yr; these 
will be referred to as “objective analysis.” An appropriate 
definition of objective analysis was given by Gandin 
(1965) : 

“Objective analysis includes the development and realization of 
methods which make it possible t o  use the measurement data of 
meteorological stations to reconstruct objectively the fields of the 
meteorological elements (variable), or at any rate to specify their 
values a t  the nodes (grid points) of some type of regular network.” 

Actually, objective analysis includes three distinct 
functions: (1) elimination or correction of gross errors in 
the data field, (2) interpolation of data to obtain values on 
a grid, and (3) smoothing of the resulting values a t  the 
grid points. 

Probably, one of the first attempts at  objective analysis 
of meteorological data was by Panofsky (1949). Panofsky 
represented a field by cubic polynomials and showed that 
the introduction of random observational errors into the 
data field resulted in only minor variations in the poly- 
nomial representation. 

By 1954, the need for a better objective-analysis 
technique to be used in conjunction with the rapidly 
developing field of numerical weather prediction resulted 
in the method developed by Gilchrist and Cressman 
(1954). Their method was based on fitting a second-degree 
polynomial by the method of least squares to the data in 
a limited area around each grid point. Wind values were 
incorporated in the scheme by using the geostrophic 
assumption to determine V h  (where h is the deviation of 
height from the standard atmosphere) at  a data point. 
Thus, each data point supplied three pieces of information, 
h, ahlax, and ahlay to be used in the least-squares fitting. 
For regions of sparse data, this method proved to be 
inadequate since at  least six initial pieces of information 
were needed to determine the second-degree polynomials 
that defined the field. I n  fact, Gilchrist and Cressman 
found that, with less than 10 pieces of data, the calcula- 
tion was subject to significant error. I n  regions of sufficient 
data, however, they found that numerical predictions 
based on the objective analyses were an improvement 
over those based on subjective analyses. 

About a year after Gilchrist and Cressman (1954) 
introduced their objective analysis technique, Berg- 
th6rsson and DOOs (1955) developed a new approach to 
objective analysis. Their method differed from Gilchrist 
and Cressman’s in that they first determined what is 
now called the (‘preliminary field.” This field was computed 
from the weighted mean of the forecast values a t  the grid 
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points and the climatological norms for that time. The 
data obtained from the observation stations were then 
used in a sequence of three corrections that were then 
applied to  tKe preliminary field with different weights, 
depending on the distance from station to  grid point. 
The numerical predictions based on the objective analysis 
technique of Bergth6rsson and Doos were approximately 
the same as the predictions based on the subjective 
analyses. 

Approximately 5 yr after the development of his 
first objective-analysis technique, Cressman (1959) intro- 
duced a modification of the Bergth6rsson-Doos (1955) 
method. I n  his new method, Cressman used a preliminary 
field that was usually the forecast for the time of the 
observation data. Weighted corrections based on the new 
observations were then applied to the preliminary field. 
The corrections were defined as a function of the distance 
(d) from grid point to station. The weight factor ( W )  
for each correction is given by 

= O  for d>n 

where n is a multiple of N, the grid interval. The cor- 
rection procedure was then repeated for decreasing 
multiples of N .  Cressman’s new method of objective 
analysis resulted in better numerical predictions than 
those based upon his previous method of analysis. 

Improvements of existing techniques have been de- 
veloped, most of which are based on the inclusion of 
additional informatiqn such as surface data, vorticity, 
geostrophic approximation, etc. (Doos and Eaton 1957, 
Johnson 1957, Sasaki 1958, Aubert 1959, Masuda and 
Arakawa 1962, and Teweles and Snidero 1962). 

Although the above objective analyses give satisfactory 
results for regions of sufficiently dense observation sta- 
tions, a reliable technique that will operate satisfactorily 
over regions of sparse data remains to be developed. 
An attempt to develop such a technique is presented in 
the following sections. 

9. BASIC SPLINE THEORY 

The problem of passing a smooth curve through a given 
set of points (N) has been solved mechanically by using 
a thin elastic strip to  define the curve (fig. 1A). This 
strip is commonly called a spline. Although a polynomial 
of degree N-1 could be determined that would also pass 
through the same set of points, the curve defined by the 
spline will be smoother. From the theory of elasticity, it 
can be shown that a spline will have the minimum possible 
strain energy (Love 1944, Holladay 1957), that is, 

J P d s  = minimum 

where K is the curvature and ds is the arc length. Since 

FIGURE 1.-(A) spline passing through points A, B, C, and D; 
(B) spline passing through A, B, C ,  and D where slopes have been 
prescribed a t  the points; (C) spline curve that results when one 
of the constraints (point C) has been removed. 

strain energy is a measure of the smoothness of &curve, 
the spline must define the smoothest curve for a given set 
of points. 

If, in addition to  knowing the points through which the 
spline passes, the slopes are prescribed at  these points, 
the spline will define a new curve (fig. 1B) having a 
minimum of strain energy for the new set of constraints. 

The concept of obtaining a smooth curve by passing a 
spline through a given set of points may be applied to the 
analysis of data. For this purposc, the spline curve 
between any two data points will have to be approximated 
mathematically by a polynomial representation. These 
piecewise polynomials mill then have to be joined together 
under certain specified constraints like the continuity of 
the function and its derivatives at  the data points. These 
constraints, of course, ‘depend on the nature of the phe- 
nomenon under investiga.tion. Fowler and Wilson (1966) 
have developed a method of determining a series of cubic 
equations that, when spliced together with continuous 
slope and curvature at  the junction points, approximate 
a spline for a given set of data and slopes. Pearce and 
Riehl (1968) .tised piecewise quadratic polynomials to 
allow for the sharp but real changes that occur in repre- 
senting a vertical wind profile. 

Normally, it is not desirable to  fit a curve exactly 
through all the data points; and so, some type of smoothing 
is performed on the data. Now, i t  is interesting to note 
that, if one of the constraints in figure 1B is removed, 
the resulting position of the spline (fig. 1C) is one of even 
less strain energy (i.e., the spline defines a smoother 
curve). Thus, an equation that approximates the new 
spline should give a smoother representation of the data. 
However, since it is not desirable to completely eliminate 
any data points, the new spline could instead be used to 
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determine the magnitude and direction of the movement 

done. Fowler and Wilson (1962) made use of this idea to  
of a data point such that “controlled” smoothing may be 

smooth their series of continuous cubic equations. 

3. MATHEMATICAL APPROXIMATION TO SPLINES t 
used The spline mathematical approximation, development the cubic of spline, the more is described widely Y 
below. A cubic spline fitting requires a general third- 
degree polynomial between any two points of a given set 
of data. Hence, 10 inital conditions must be known. If 
the coordinate system is translated and rotated so that 
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(3) FIGURE 3.-Normal position assumed by the cubic spline when 
fitted to the end points of a 3-data interval. 

slope = Sl’ 

(4) system. This transformation is given by (at the second end point) x’=d, y’=O 

SI- TR 
l+Sl* TR 

S2- TR 
1+S2 * TR 

slope=S2‘ (5) 
S1’= 

and where d is the distance between the end points. 
The equation for the slope is given by the first derivative 

of eq (1): S2’ = 

$$=~AX’~+~BZ‘ +C. 

The system consisting of eq (1) through (6) may now be 
solved in terms of Sl‘, S2‘, and d. The resulting expression 
for y’, then, is ’ 

Due to the rotation of the coordinate system, the end- 
point slopes in the original system S1 and S2 have been 
transformed to new values S1‘ and S2‘ in the primed 

where TR is the tangent of the angle of rotation (e). 
Now consider a data interval to be the interval defined 

by the end points of three successive data points. A cubic 
equation fitted to  the end points of each successive interval 
for a given set of data will usually pass between the curve 
to be approximated and the middle data point of the 
interval (fig. 3). This suggests an iterative smoothing 
procedure resulting in the convergence of the data toward 
the curve. 

Starting with the first interval, one constructs a cubic 
for that interval. The middle data point is then adjusted 
toward the cubic. Since the location of the curve to be 
approximated is not known in most cases, the middle point 
is only moved some fraction of the total distance between 
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FIGURE 4.-(A) set of three cubic splines approximating a curve; 
(B) second iteration in the cubic spline convergence; (C) third 
iteration in the cubic spline convergence. 

the point and the cubic curve. The procedure is repeated 
in the succeeding intervals. Figure 4A illustrates this pro- 
cedure where the adjusted points are indicated by the 
higher subscripts. For example, a cubic is fitted to  A, and 
C,. The middle point Bo is then moved toward the cubic 
to its adjusted position B1. In  the next interval, the cubic 
is fitted to Bo and Do, which adjusts C, to C1. Similarly, 
Do is adjusted to D1 in the interval (Co, Eo). Upon com- 
pletion of the data adjustment for all intervals, the entire 
process is repeated until satisfactory convergence is 
achieved or the benefit of additional smoothings becomes 
impractical. Figures 4B and 4C depict the second and 
third iterations in a series of three smoothing iterations 
for a set of five data points. In  general, spline interpola- 
tion converges rapidly as shown by Ahlberg and Nilson 
(1963) and has the additional property of being insensitive 
to round-off errors. 

4. TWO-DIMENSIONAL CONSIDERATIONS 

The results of approximating curves by splines have 
been so successful (Curtis and Bowel1 1966; Walsh et al. 
1E62) that it would seem desirable to extend the theory to 
approximate surfaces. Birkhoff and DeBoor (1965) de- 
veloped a method using bicubic spline interpolation that 
approximates surfaces on a rectangular field given the data 
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value (u) at all grid points, the normal derivative (bulb%) 
a t  the boundary grid points of each elemental rectangle, 
and the cross derivatives (d2u/bxdy) at the four corners of 
the field. I n  practice, however, most data fields are not 
known at  a regular grid network; and the problem is there- 
fore to  interpolate the known data to the grid points and 
smooth the resulting fields. 

Since circles were used successfully by Fowler and Wilson 
(1962) to obtain an approximation to the slope a t  each 
point in their curve-fitting routine, it would seem logical 
to fit spheres to the data to approximate the surface and 
slope in a surface-fitting routine. Since the value of the 
surface is desired only a t  the grid points, the problem may 
be reduced to one of splicing the surfaces of the spheres 
together at a discrete number of points. 

Given an arbitrarily located set of two-dimensional data 
points, one places the points in an order according to in- 
creasing values of the 2 coordinate. A grid network is de- 
fined (grid length is arbitrary) to cover the data field such 
that all data points fall within the network. Since, for a 
given grid point, not all the data influence the value at 
that point, what shall be referred to as the "band of in- 
fluence" is defined for each grid line (y=constant). The 
vertical plane coincident with the grid line is called the 
grid plane. 

For a given grid line, those data points that fall into the 
band of influence are used to define the spheres. The sur- 
face value a t  each grid point on the grid line can then be 
determined by substituting the coordinate of the grid 
point into the equation for the appropriate sphere. The 
equation for a sphere is given by 

(2 - a) 2+ (y- b )  2+ (2 - c)  2= T2. (8) 

Given four data points, one may solve eq (8) for a, 6 ,  and 
c (the coordinates of the center of the sphere) and T (the 
radius of the sphere). For a given grid line y=y1 that 
passes through the sphere and lor grid point x=xt in the 
domain of the sphere, eq (8) may be solved for the sur- 
face z C I  at the grid point. 

A detailed description of the procedure for determining 
an approximation to the surface a t  all grid points along 
with an error check for these approximations is given by 
Fritsch (1969). 

Starting with the first grid line yl, one smooths each 
grid line, using the cubic spline routine as outlined in sec- 
tion 3. Upon completion of smoothing in the 2 direction, 
the entire field is smoothed in the same manner in the y 
direction. Repeated smoothings in the z and ?J directions 
eliminate directional bias; and after three or four of these 
bidirectional smoothings, the grid point values converge 
to a surface. 

5. RESULTS 
For properly testing the spline method, one would have 

an advantage knowing an exact solution for the surface. 
Thus, in addition to a qualitative evaluation of the results, 
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FIGURE 5.-Data-point locations (marked by crosses) and the 
percent error for the spline approximation to the exact solution. 
The unshaded areas have less than 5-percent error; the percent 
error shown in each shaded area is the maximum error for that 
area. 

a quantitative measure of the error could be determined. 
This would have the additional advantage of being able to 
compare, quantitatively, the error of the spline objective 
analysis to the error of other methods. 

Based on these considerations, a test was constructed 
using a solution for the stream function for the upper level 
of a two-layer baroclinic spectral general circulation 
model. Orographic and land-sea effects were not included 
in the test model. The solution selected was for the 
Northern Hemisphere and (when multiplied by the ap- 
propriate conversion factor) could be interpreted as the 
height of the 250-mb pressure surface. A total of 356 data 
points was selected, most of which are established radio- 
sonde stations (fig. 5 ) .  An 18x72 grid (5’ latitude grid 
length) was used, and the height a t  all grid points was 
determined from the exact solution (fig. 6). I n  figure 5, the 
percent error at  each grid point is defined as 

’% error= lOO%X (exact height 
minus spline analysis height)/ (exact height). 

The results of applying the spline technique to the data 
at  the radiosonde locations are shown in figure 7. Another 
objective analysis technique based on that of Cressman 
(1959) was applied to the same data, and the results are 
shown in figure 8. Application of Cressman’s technique 
normally requires a preliminary field. This field is usually 
the forecast for the observation time of the data being 
analyzed- Since a forecast, other than the exact solution, 
was not available to the author (Fritsch), the mean value 

FIGURE 7.-spline approximation to the exact solution; the standard 
error is 147 m. 

el-361 0-7- 
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FIGURE 8.-Cressman's approximation to the exact solution; the 
standard error is 321 m. 

of the exact solution along each line of constant latitude 
(every 5") was substituted at  all grid points along the 
respective latitude line. For obtaining the preliminary 
field at  observation points, a linear interpolation was 
applied between the mean heights of the latitude lines im- 
mediately north and south of each observation point. 
Cressman's technique also uses the geostrophic approxi- 
mation on the observed winds to correct the height field. 
Since the exact solution used to test the Cressman and 
spline techniques was in geostrophic balance, the geo- 
strophic wind was calculated at  each observation point 
and subsequently used in the Cressman technique. 

Other than the mean height approximation for the pre- 
liminary field and the geostrophic wind in place of the 
observed wind, the Cressman technique used in the test 
comparison mas essentially the same (scan radii, smooth- 
ing, etc.) as that discussed in Cressman (1959). The 
standard error was computed for both techniques with the 
result that the error for Cressman's technique was on the 
order of twice the error of the spline technique. The per- 
cent error for the spline solution was calculated at  each 
grid point and is shown in figure 5. The only region where 
greater than 10-percent error occurs is located over that 
section of the Pacific Ocean where there is an extreme lack 
of data (fig. 5 ) .  The mean error for the entire Northern 
Hemisphere was approximately 3 percent; and in regions 
of good data coverage, this figure usually dropped to  0-2 
percent . 

FIGURE 9.-Spline analysis of the 850-mb temperature ("C) for the 
Central United States a t  0000 GMT on Dec. 28, 1966. 

FIGURE 10.-Subjective analysis of the 850-mb temperatures ("C) 
for the Central United States at 0000 GMT on Dec. 28, 1966. 

In  practical weather analysis, quite frequently it becomes 
necessary to analyze pressure gradient and/or temperature 
discontinuities (fronts). Since one of the functions of 
most objective analyses is to  smooth the data, the dis- 
continuity is often lost completely or is smoothed to such 
an extent that its frontal characteristics are no longer 
significant. Since it is usually desirable to maintain frontal 
characteristics, a test was constructed to determine how 
the cubic spline technique performs on discontinuities. 
The temperature data for the United States at 0000 GMT 

on Dec. 28, 1966, was selected for analysis. On this date. 
a particularly well-defined cold front was located near the 
middle of the country. Figure 9, the spline analysis. of 
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FIQURE 11.-Spline analysis of the 500-mb winds (kt) for the 
Central United States at 0000 GMT on Dec. 28, 1966. 

FIGURE 13.-Spline analysis of the 300-mb geopotential heights 
(m) for the Central United States at 0000 GMT on Dec. 28, 1966. 

FIQURE l2.-Subjective analysis of the 500-mb winds (kt) for 
the Central United States at 0000 GMT on Deo. 28, 1966. 

FIGURE 14.-Subjective analysis of the 300-mb geopotential heights 
(m) for the Central United States at 0000 GMT on Dec. 28,1966. 

the front at the 850-mb pressure surface where the front 
is most intense, indicates that the loss of frontal character- 
istics appears to be minimal. Figure 10 is the corresponding 
subjective analysis. A comparison of objective and sub- 
jective analyses shows .good agreement both along and 
across the front. It is possible that the frontal character- 
istics may be even better resolved if a quadratic spline 
is used (e.g., Pearce 1968). 

For the same time and location as the temperature data, 
the wind and height data were also analyzed objectively 
(figs. 11 and 13, respectively) and subjectively (figs. 
12 and 14, respectively). Additional spline analyses of 
real temperature, wind, and height fields are shown in 
Fritsch (1969). 

6. CONCLUSIONS 

Objective analysis by the spline technique appears to 
be a satisfactory method for two-dimensional data 
analysis. Analysis of regions with poor data coverage also 
appears tod give satisfactory results except in those 
situations where the features being analyzed are defined 
by less than three pieces of data. The magnitude of the 
gradient of the data to be analyzed does not seem to 
have any undesirable effects on the performance of the 
technique, provided that the input parameters are properly 
defined. 
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